Спектральный анализ химического состава металла. Определить химический состав сталей и сплавов

💖 Нравится? Поделись с друзьями ссылкой

При облучении атом вещества переходит в возбуждённое состояние, сопровождающееся переходом электронов на более высокие квантовые уровни. В возбуждённом состоянии атом находится около одной микросекунды, после чего возвращается в основное состояние. При этом электроны с внешних оболочек либо заполняют образовавшиеся вакантные места, а излишек энергии испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек. Каждый атом испускает фотоэлектрон с энергией строго пределённого значения. По энергии и количеству квантов судят о строении вещества. После возбуждения спектр регистрируется на специальном детекторе. Чем лучше спектральное разрешение детектора, тем точнее он сможет отделять друг от друга фотоны от разных элементов. После попадания на детектор фотоэлектрон преобразовывается в импульс напряжения и передается на компьютер. По пикам полученного спектра качественно определяется, какие элементы присутствуют в образце.
Для получения точного количественного содержания полученный спектр обрабатывается с помощью специальной программы калибровки (количественной градуировки прибора). Калибровка проводится с использованием стандартных образцов, чей элементный состав точно известен.
РФА не разрушает и не деформирует пробу, не требует пробоподготовки, делает ненужной измерение количества пробы - взвешивание, измерение объема и т.п. Этот метод широко используется на производстве и в научных лабораториях.
Аппараты ComPact eco PIN и Cube PIN для количественного анализа наиболее распространенных сплавов в ювелирной промышленности. Разработаны на базе кремниевого детектора высокого разрешения, являющегося последним словом в этой области.
Калибровка
Предварительная калибровка для золота и других драгоценных металлов.
Операционная система
X-MasteR Основной задачей операционной системы является управление параметрами рентгеновской системы, а также сбор и обработка данных измерений.
Анализаторы оснащены современным, простым в использовании программным обеспечением с точным алгоритмом анализа состава ювелирных украшений, монет и других изделий из драгоценных металлов. Программное обеспечение обеспечивает сбор данных, управление, пиковую идентификацию, анализ спектральных характеристик, количественный анализ исследуемого сплава, генерацию отчетов, управление статистическими данными, их хранение и печать.
Компактность и мобильность
Аппараты имеют небольшие массу и габариты и являются переносными, что позволяет их устанавливать практически где угодно - от больших выставочных залов до маленьких шоурумов. Каждый аппарат выпускается в двух вариантах конструктивного исполнения:
ComPact и Cube
Аппараты ComPact eco PIN и Cube PIN с использованием кремниевого детектора высокого разрешения в сочетании с цифровой обработкой данных обеспечивают отличные показатели пороговой чувствительности и точности. По сравнению с общепринятыми методами раз решение выше почти в четыре раза, а разделение элементов также намного лучше. Высокий уровень характеристик получен во многом благодаря более высокому отношению «сигнал /шум».
Безопасность Эксплуатация источника рентгеновского излучения отвечает установленным требованиям. Встроенная система безопасности обеспечивает эффективное управление всеми защитными функциями и блокировками аппаратов Citizen.
Простота в использовании
Предлагаемые технические устройства являются удобными и простыми в эксплуатации, не требуют специально обученного персонала. Необходимо просто поместить испытуемый образец в рабочую камеру и через 35 - 180 сек. получить готовый результат. Анализ проводится бесконтактным и безопасным способом.

Время измерения 35 - 180 сек.

Размеры камеры
Высота 170 мм, ширина 330 мм, глубина 200 мм (Cube)
Выкладка образцов Подъемно-поворотный столик z-образного типа


Оказание услуг по проведению химического анализа металла

Мы можем выполнить следующие работы:

Химический состав, химанализ металла:

    Определить химический состав сталей и сплавов

    Подтвердить марки сталей

    Восстановить документацию на продукцию

    Подтвердить или опровергнуть сертификат

    Входной контроль металлов и сплавов

    Сортировать лом из черных и цветных металлов

    Определить химический состав рудных пород

    Подобрать аналог сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 8.0 Prof)

Механические испытания:

    Сжатие и растяжение

    Определение твердости

Варианты сотрудничества:

    Проведение испытаний на предприятии заказчика

    Испытание образцов в нашей лаборатории

    Выезд в регионы и получение образцов через транспортные компании

Оперативность

Выезд специалиста на объект заказчика

Работа на всей территории РФ

Высоко квалифицированные специалисты

Работа в соответствии ГОСТ

Подбор аналогов сталей и сплавов

Консультация специалиста

Заявка в один клик (заказать услугу с сайта)

"Сталь. Метод рентгенофлюоресцентного анализа"

ГОСТ 12353-78, ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12350-78, ГОСТ 12346-78, ГОСТ 12347-77, ГОСТ 12348-78, ГОСТ 12352-81, ГОСТ 12355-78

Используемое оборудование для химического анализа

ВСЕ ОБОРУДОВАНИЕ ИМЕЕТ ДЕЙСТВУЮЩИЕ СВИДЕТЕЛЬСТВА О ПОВЕРКЕ.


X-MET 8000 является рентгенофлуоресцентным портативным энергодисперсионным спектрометром с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89.

Диапазон измеряемых элементов: от Mg до Bi.

PMI MASTER UVR-мобильный оптико-эмиссионный анализатор металлов, который позволяет проводить высокоточный анализ и определять марку любых сталей и сплавов с возможностью анализа углерода, серы, фосфора.

АRC-MET-8000 портативный оптико-эмиссионный анализатор работающий в аргоновом режиме. С возможностью определения и прекрасной повторяемостью результатов по углероду, сере, фосфору и бору.

Стационарный твердомер по методу Роквелла МЕТОЛАБ101
Стационарный твердомер используется для измерения твердости твердых сплавов, а также закаленных и не закаленных сталей, литья, подшипниковых сталей, алюминиевых сплавов, тонких плит твердых сплавов, меди, цинкованных, хромированных и луженых покрытий поверхностей и др. по методу Роквелла.
Свидетельство об утверждении типа средств измерений RU.C.28.002.A № 63563.

Последовательность измерения

1 2
  • X-MET 8000
  • PMI MASTER UVR
3

Определение химического состава образца

Сегодня проведение химического анализа металлов - стилоскопирования - не требует нарушения целостности проверяемой конструкции или подготовки образцов. Чтобы сделать спектральный анализ и определить физико-химические характеристики металлов и сплавов, в лабораторию обращаться тоже необязательно: современный фотоэлектрический метод спектрального анализа позволяет контролировать качество готовых изделий даже в полевых условиях.

Зачем нужен спектральный анализ металлов и сплавов?

Проведение спектрального анализа металлов с помощью стационарных или портативных приборов, использующих метод рентгенофлуоресцентного спектрального анализа стали согласно ГОСТ 28033–89, призвано помочь профильным предприятиям в сортировке металла.

Подобное решение демонстрирует целый ряд преимуществ. Чтобы провести экспертизу металла не понадобится много времени. Результат будет известен уже через несколько минут. Такая мини-лаборатория по химическому анализу металла значительно сократит издержки производственного предприятия, крупного ритейлера и коммунальные службы. Устанавливаемая на спектральный анализ металла цена в специализированных организациях и график их работы больше не имеют значения: однажды купив анализатор металлов и пройдя курс подготовки специалистов, которые будут с ним работать в дальнейшем, ваша компания сможет организовать спектральный анализ металла в удобное время и в удобном месте.

Используется химический анализ металла в следующих случаях:

    Подтверждение марки, подтверждение сертификатов.

    Сортировка лома металлов и сплавов. В этой сфере достаточно распространены фальсификации, однако если приемщиками используется химический анализ, определение металла, дающее максимально точный результат, гарантированно избавит предприятие от убытков.

    Калибровочные программы прибора.

С какими веществами работает анализ химического состава металлов?

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится в лаборатории с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi. Метод подходит для определения химического состава и марки стали, других металлов. В частности, допускается:

  • химический анализ алюминиевых сплавов;
  • химический анализ титановых сплавов;
  • анализ сплавов железа и т. д.

Универсальная программа химического анализа сплавов использует несколько фундаментальных параметров для анализа металлов и сплавов, стандартный набор из 33 элементов: Mg, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Y, Zr, Nb, Mo, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Pt, Ir, Au, Pb, Bi в концентрациях от 0 до 100%. Применима для анализа металлов на любой основе: Pb, W, Au и пр., ферросплавов

Как работает химический анализ металлов и сплавов?

Для того чтобы сделать сделать химический экспресс анализ металла, достаточно приложить к его поверхности один из реализуемых нами приборов. Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Приборы для проведения спектрального анализа

Что такое рентгенофлуоресцентный анализатор?

Рентгенофлуоресцентный спектрометр представляет собой аналитический прибор, который определяет каждый химический элемент, присутствующий в тестируемом образце.

Это устройство также определяет общее количество химических элементов в образце.

X-MET 7500

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi.Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Данный вид контроля используется в следующих случаях:

  • Определение химического состава сталей и сплавов.
  • Восстановление документации на продукцию.
  • Подтверждение марки,подтверждение сертификатов.
  • Входной контроль металлов и сплавов.
  • Сортировка лома металлов и сплавов.
  • Подбор аналогов сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 7.0 Prof).

Какие параметры позволяет определить химанализ металла?

Пользователю доступен набор из 8 специализированных эмпирических программ: «низколегированные стали и чугуны», «нержавеющие стали», «инструментальные стали», «алюминиевые сплавы», «медные сплавы», «кобальтовые сплавы», «титановые сплавы», «никелевые сплавы». Выбор программы, с помощью которой планируется проводить определение химического состава металла, осуществляется автоматически.

  • Программа для идентификации спектра (да/нет).
  • Программа для анализа углеродистых, низколегированных сталей и чугунов.
  • Программа для анализа нержавеющих сталей.
  • Программа для анализа инструментальных сталей.
  • Программа для анализа медных сплавов.
  • Программа для анализа никелевых сплавов.
  • Программа для анализа титановых сплавов.
  • Программа для анализа кобальтовых сплавов.
  • Программа для анализа алюминиевых сплавов.
  • Идентификационные программы (да/нет).
  • Функция автоматического определения типа материала и выбора необходимой программы для анализа.
  • Автоматическая коррекция концентраций при измерении образцов малых размеров и сложных форм.
  • Функция рекалибровки по одной точке.
  • Встроенный марочник металлов и сплавов, возможность корректировки и добавления марок.
  • Возможность усреднения результатов не менее чем по 50-ти измерениям для получения достоверных результатов при анализе неоднородных образцов.
  • Возможность создания отчетов в защищенном от корректировки формате PDF по шаблону пользователя с возможностью размещением логотипа компании, результатов измерений, погрешности измерений, времени и длительности измерений, имени оператора и другой информации на выбор пользователя.

Анализ металлов и сплавов

Анализ металлов и сплавов решает аналитическими методами задачу определения элементного состава металлов и их сплавов. Главная цель - проверка сорта сплава или типа и композиционный анализ различных сплавов (количественный анализ).

  • волнодисперсионный анализ,
  • эмиссионный анализ,
  • рентгено-флоуресцентный анализ,
  • пробирный анализ.

Рентгенофлуоресцентный анализ

Портативный рентгефлуоресцентный спектрометр для анализа металлов и сплавов

Спектр отображающий сплав Al, Fe, Ti

Рентгенофлуоресцентный анализ проводится посредством воздействия на металл рентгеновским излучением и анализа флуоресценции при помощи современной электроники для достижения хорошей точности измерений.

Преимущества метода:

  • Неразрушающий анализ.
  • Возможно измерение многих элементов с высокой точностью.

Идентификация сплава достигается путем определения уникальной комбинации нескольких элементов в указанных композиционных диапазонах. Точный количественный анализ достигается путем использования соответствующих коррекций матрицы межэлементных влияний.

Анализируемый материал в течение нескольких секунд подвергается рентгенофлуоресцентному воздействию. Атомы элементов в материале возбуждаются и испускают фотоны с энергией, спецефичной для каждого элемента . Датчик отделяет и накапливает фотоэлектроны, получаемые от образца в энергетические области и, по мере общей интенсивности в каждой области, определяет концентрации элемента. Энергетическая область, соответствующая элементам , , , МС , , , , , , , , , , , , , , , , , , может быть эффективно проанализирована.

РФ анализтор состоит из центрального процессора, рентгеновской трубки, детектора, электронной памяти, хранящей градуировочные данные. Кроме того, память также используется для хранения и обработки данных марок сплавов и других коэффициентов, имеющим отношение к различным специальным режимам работы.

Как правильно, контроль за исследованием осуществляется посредством компьютерной программы, базирующейся на наладонном портативном компьютере (КПК), которая выдает пользователю изображение спектра и полученные значения содержаний элементов.

После проведения анализа значения сравниваются с базой данных по маркам сталей и производится поиск наиболее близкой марки.

Эмиссионный метод

Эмиссионный метод: Один из основных источников случайной погрешности измерений относительных концентраций примеси в эмиссионном спектральном анализе - это нестабильность параметров источника возбуждения спектра. Поэтому для обеспечения эмиссии примесных атомов из образца и последующего их оптического возбуждения используется низковольтный искровой, так называемый, C, R, L - разряд. При этом стабилизируется два параметра, от которых зависят процессы эмиссии и оптического возбуждения - напряжение и энергия в разрядном контуре. Это обеспечивает низкое среднеквадратичное отклонение (СКО) результатов измерений. Особенностью эмиссионого метода является количественное определение легких элементов в сплавах на основе железа (анализ серы, фосфора и углерода в стали). Существуют несколько видов приборов для эмиссионного анализа основанных на искровом и воздухо дуговом методе или их комбинации.

Пробирный метод

Пробирный метод: Пробирная плавка основана на физико-химических закономерностях восстановления металлов, шлакообразования и смачивания расплавленными веществами. Основные этапы пробирного анализ на примера сплава серебра и свинца:

  • Подготовка пробы
  • Шихтование
  • Тигельная плавка на свинцовый сплав
  • Сливание свинцового сплава в железные изложницы для охлаждения
  • Отделение свинцового сплава (веркблея) от шлака
  • Купелирование веркблея (удаление свинца)
  • Извлечение королька драгоценных металлов, взвешивание его
  • Квартование (добавление серебра, по необходимости)
  • Обработка королька разбавленной азотной кислотой (растворение серебра)
  • Гравиметрическое (весовое) определение серебра

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Анализ металлов и сплавов" в других словарях:

    - (радиоактивационный анализ), метод качественного и количественного элементного анализа в ва, основанный на активации ядер атомов и исследовании образовавшихся радиоактивных изотопов (радионуклидов). В во облучают ядерными частицами (тепловыми или … Химическая энциклопедия

    Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам с металлическими… …

    У этого термина существуют и другие значения, см. Проба (значения). Проба благородных металлов определение различными аналитическими методами пропорции, весового содержания основного благородного металла (золота, серебра, платины и т.п.) в… … Википедия

    - … Википедия

    Определение хим. состава и кол ва отдельных фаз в гетерогенных системах или индивидуальных форм соед. элементов в рудах, сплавах, полупроводниках и др. Объектом Ф. а. всегда является твердое тело. Название Ф. а. стало доминирующим, хотя нек рые… … Химическая энциклопедия

    Спектральный анализ, физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а.‒ спектроскопия атомов и молекул, его классифицируют по… … Большая советская энциклопедия

    I Спектральный анализ физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… … Большая советская энциклопедия

    Метод качеств. и количеств. анализа металлов и сплавов без предварит. отбора пробы (без взятия стружки). При анализе сплавов цветных и черных металлов одну или неск. капель к ты или др. р рителя помещают на тщательно очищенную пов сть… … Химическая энциклопедия

    Метод исследования атомного строения в ва путём экспериментального изучения дифракции рентгеновского излучения в этом в ве. Р. а. осн. на том, что кристаллы представляют собой естеств. дифракционные решётки для рентгеновского излучения. Р. а.… … Большой энциклопедический политехнический словарь


Спектральный анализ I Спектра́льный ана́лиз

физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а.- Спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров (см. Спектры оптические). Атомный С. а. (АСА) определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный С. а. (МСА) - молекулярный состав веществ по молекулярным спектрам поглощения, люминесценции (См. Люминесценция) и комбинационного рассеяния света (См. Комбинационное рассеяние света).

Эмиссионный С. а. производят по спектрам испускания атомов, ионов и молекул, возбуждённым различными источниками электромагнитного излучения в диапазоне от γ-излучения до микроволнового. Абсорбционный С. а. осуществляют по спектрам поглощения электромагнитного излучения анализируемыми объектами (атомами, молекулами, ионами вещества, находящегося в различных агрегатных состояниях).

Историческая справка. В основе АСА лежит индивидуальность спектров испускания и поглощения химических элементов, установленная впервые Г. Р. Кирхгоф ом и Р. Бунзен ом (1859-61). В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике. В 1861-1923 с помощью АСА было открыто 25 элементов. В 1932 спектральным методом был открыт дейтерий.

Высокая чувствительность и возможность определения многих элементов в пробах малой массы сделали АСА эффективным методом качественного анализа элементного состава объектов. В 1926 нем. физик В. Герлах положил начало количественному С. а. Для развития С. а. и внедрения его на промышленных предприятиях СССР большую роль сыграли Г. С. Ландсберг, С. Л. Мандельштам, А. К. Русанов (Москва), А. Н. Филиппов, В. К. Прокофьев (Ленинград) и др.

Атомный спектральный анализ (АСА)

Эмиссионный АСА состоит из следующих основных процессов:

1) отбор представительной пробы, отражающей средний состав анализируемого материала или местное распределение определяемых элементов в материале;

2) введение пробы в источник излучения, в котором происходят испарение твёрдых и жидких проб, диссоциация соединений и возбуждение атомов и ионов;

3) преобразование их свечения в спектр и его регистрация (либо визуальное наблюдение) с помощью спектрального прибора (См. Спектральные приборы);

4) расшифровка полученных спектров с помощью таблиц и атласов спектральных линий элементов.

На этой стадии заканчивается качественный АСА. Наиболее результативно использование чувствительных (т. н. «последних») линий, сохраняющихся в спектре при минимальной концентрации определяемого элемента. Спектрограммы просматривают на измерительных микроскопах, компараторах, спектропроекторах. Для качественного анализа достаточно установить наличие или отсутствие аналитических линий определяемых элементов. По яркости линий при визуальном просмотре можно дать грубую оценку содержания тех или иных элементов в пробе.

Количественный АСА осуществляют сравнением интенсивностей двух спектральных линий в спектре пробы, одна из которых принадлежит определяемому элементу, а другая (линия сравнения) - основному элементу пробы, концентрация которого известна, или специально вводимому в известной концентрации элементу («внутреннему стандарту»).

В основе количественного АСА лежит соотношение, связывающее концентрацию с определяемого элемента с отношением интенсивностей линии определяемой примеси (I 1) и линии сравнения (I 2):

I 1 /I 2 = ac b

(постоянные а и b определяются опытным путём), или

lg(I 1 /I 2 ) = b lgс + lga.

С помощью стандартных образцов (не менее 3) можно построить график зависимости lg(I 1 /I 2 .) от lg с (градуировочный график, рис. 1 ) и определить по нему а и b. Значения I 1 и I 2 можно получать непосредственно путём фото-электрической регистрации или путём фотометрирования (измерения плотности почернения) линии определяемой примеси и линии сравнения при фоторегистрации. Фотометрирование производят на Микрофотометр ах.

Для возбуждения спектра в АСА используют различные источники света и соответственно различные способы введения в них образцов. Выбор источника зависит от конкретных условий анализа определённых объектов. Тип источника и способ введения пробы составляют главное содержание частных методик АСА.

Первым искусственным источником света в АСА было пламя газовой горелки - источник весьма удобный для быстрого и точного определения многих элементов. Температура пламён горючих газов не высока (от 2100 К для смеси водород - воздух до 4500 К для редко используемой смеси кислород - циан). С помощью фотометрии пламени определяют около 70 элементов по их аналитическим линиям, а также по молекулярным полосам соединений, образующихся в пламёнах.

В эмиссионном АСА широко используют электрические источники света. В электрической дуге постоянного тока между специально очищенными угольными электродами различной формы, в каналы которых помещают исследуемое вещество в измельченном состоянии, можно производить одновременное определение десятков элементов. Она обеспечивает относительно высокую температуру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300-400 в или переходя к высоковольтной дуге (3000-4000 в ), можно увеличить точность анализа.

Более стабильные условия возбуждения создаёт дуга переменного тока. В современных генераторах дуги переменного тока (см., напр., рис. 2 ) можно получить различные режимы возбуждения: низковольтную искру, высокочастотную искру, дугу переменного тока, импульсный разряд и т. д. Такие источники света с различными режимами используют при определении металлов и трудновозбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсированная искра (рис. 3 ) служит главным образом источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях анализируемых электродов, приводят к изменениям состава плазмы разряда. Чтобы устранить это явление, приходится производить предварительный обжиг проб и нормировать форму и размеры проб и стандартных образцов.

В АСА перспективно применение стабилизированных форм электрического разряда типа плазмотронов различных конструкций, высокочастотного индукционного разряда, СВЧ-разряда, создаваемого магнетронными генераторами, высокочастотного факельного разряда. С помощью различных приёмов введения анализируемых веществ в плазму этих типов разряда (продувка порошков, распыление растворов и т. д.) значительно повышена относительная точность анализа (до 0,5-3%), в том числе и компонентов сложных проб, содержание которых составляет десятки %. В некоторых важных случаях анализа чистых веществ применение этих типов раз ряда снижает пределы определения примесей на 1-2 порядка (до 10 -5 -10 -6 %).

Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу превращают в пар в атомизаторе (пламени, графитовой трубке, плазме стабилизированного ВЧ-или СВЧ-разряда). В ААА свет от источника дискретного излучения, проходя через этот пар, ослабляется и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на специальных Спектрофотометр ах. Методика проведения ААА по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. ААА с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности.

В АФА атомные пары пробы облучают светом источника резонансного излучения и регистрируют флуоресценцию определяемого элемента. Для некоторых элементов (Zn, Cd, Hg и др.) относительные пределы их обнаружения этим методом весьма малы (Спектральный анализ10 -5 -10 6 %).

АСА позволяет проводить измерения изотопного состава. Некоторые элементы имеют спектральные линии с хорошо разрешенной структурой (например, Н, Не, U). Изотопный состав этих элементов можно измерять на обычных спектральных приборах с помощью источников света, дающих тонкие спектральные линии (полый катод, безэлектродные ВЧ-и СВЧ-лампы). Для проведения изотопного спектрального анализа большинства элементов требуются приборы высокой разрешающей способности (например, эталон Фабри - Перо). Изотопный спектральный анализ можно также проводить по электронно-колебательным спектрам молекул, измеряя изотопные сдвиги полос, достигающие в ряде случаев значительной величины.

Экспрессные методы АСА широко применяются в промышленности, сельском хозяйстве, геологии и многих др. областях народного хозяйства и науки. Значительную роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3 / 4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин ) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологической разведке для оценки месторождений производят около 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при разделении изотопов и определении возраста и состава геологических и археологических объектов и т. д.

Лит.: Заидель А. Н., Основы спектрального анализа, М., 1965; Методы спектрального анализа, М, 1962; Эмиссионный спектральный анализ атомных материалов, Л. - М., 1960; Русанов А. К., Основы количественного спектрального анализа руд и минералов. М., 1971; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, [Л.], 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, М., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич Н. И.. Семененко К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, М., 1973: Прокофьев В. К., Фотографические методы количественного спектрального анализа металлов и сплавов, ч. 1-2, М. - Л., 1951; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Королев Н. В., Рюхин В. В., Горбунов С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 3 изд., М., 1969; Стриганов A. P., Свентицкий Н. С., Таблицы спектральных линий нейтральных и ионизованных атомов, М., 1966.

Л. В. Липис.

Молекулярный спектральный анализ (МСА)

В основе МСЛ лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный МСА. В МСА используют различные виды молекулярных спектров (См. Молекулярные спектры), вращательные [спектры в микроволновой и длинноволновой инфракрасной (ИК) областях], колебательные и колебательно-вращательные [спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (КРС), спектры ИК-флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные [спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции]. МСА позволяет проводить анализ малых количеств (в некоторых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.

Основные факторы, определяющие возможности методов МСА:

1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определённом интервале длин волн или частот исследуемого диапазона (для микроволнового диапазона оно Спектральный анализ 10 5 , для средней ИК-области в спектрах твёрдых и жидких веществ Спектральный анализ 10 3);

2) количество измеренных спектров индивидуальных соединений;

3) существование общих закономерностей между спектром вещества и его молекулярным строением;

4) чувствительность и избирательность метода;

5) универсальность метода;

6) простота и доступность измерений спектров.

Качественный МСА устанавливает молекулярный состав исследуемого образца. Спектр молекулы является его однозначной характеристикой. Наиболее специфичны спектры веществ в газообразном состоянии с разрешенной вращательной структурой, которые исследуют с помощью спектральных приборов высокой разрешающей способности. Наиболее широко используют спектры ИК-поглощения и КРС веществ в жидком и твёрдом состояниях, а также спектры поглощения в видимой и УФ-областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.

Для повышения эффективности МСА в некоторых случаях измерение спектров комбинируют с др. методами идентификации веществ. Так, всё большее распространение получает сочетание хроматографического разделения смесей веществ с измерением ИК-спектров поглощения выделенных компонент.

К качественному МСА относится также т. н. структурный молекулярный анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания общие черты. Наиболее ярко это проявляется в колебательных спектрах. Так, наличие сульфгидрильной группы (-SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565-2575 см -1 , нитрильная группа (-CN) характеризуется полосой 2200-2300 cм -1 и т. д. Присутствие таких характеристических полоса колебательных спектрах веществ с общими структурными элементами объясняется характеристичностью частоты и формы многих молекулярных колебаний. Подобные особенности колебательных (и в меньшей степени электронных) спектров во многих случаях позволяют определять структурный тип вещества.

Качественный анализ существенно упрощает и ускоряет применение ЭВМ. В принципе его можно полностью автоматизировать, вводя показания спектральных приборов непосредственно в ЭВМ. В её памяти должны быть заложены спектральные характеристические признаки многих веществ, на основании которых машина произведёт анализ исследуемого вещества.

Количественный МСА по спектрам поглощения основан на Бугера - Ламберта - Бера закон е, устанавливающем связь между интенсивностями падающего и прошедшего через вещество I света от толщины поглощающего слоя I и концентрации вещества с:

I (l )=I 0 e - χcl

Коэффициент χ является характеристикой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие проведения количественного МСА - независимость χ от концентрации вещества и постоянство χ в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преимущественно для жидкостей и растворов, для газов он значительно усложняется.

В практическом МСА обычно измеряют т. н. оптическую плотность:

D = In (/ о //) = χсl.

Если смесь состоит из n веществ, не реагирующих друг с другом, то оптическая плотность смеси на частоте ν аддитивна: m точках спектра смеси (m ≥ n ) и решению получаемой системы уравнений:

Для количественного МСА обычно пользуются спектрофотометрами, позволяющими производить измерение /(ν) в сравнительно широком интервале ν . Если полоса поглощения исследуемого вещества достаточно изолирована и свободна от наложения полос др. компонент смеси, исследуемый спектральный участок можно выделить, например, при помощи интерференционного Светофильтр а. На его основе конструируют специализированные анализаторы, широко используемые в промышленности.

При количественном МСА по спектрам КРС чаще всего интенсивность линии определяемого компонента смеси сравнивают с интенсивностью некоторой линии стандартного вещества, измеренной в тех же условиях (метод «внешнего стандарта»). В др. случаях стандартное вещество добавляют к исследуемому в определённом количестве (метод «внутреннего стандарта»).

Среди др. методов качественного и количественного МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако в обычных условиях он уступает методам колебательной спектроскопии в универсальности и избирательности. Количественный МСА по спектрам флуоресценции основан на сравнении свечения раствора исследуемого образца со свечением ряда эталонных растворов близкой концентрации.

Особое значение имеет МСА с применением техники замороженных растворов в специальных растворителях, например парафинах (см. Шпольского эффект). Спектры веществ в таких растворах (спектры Шпольского) обладают ярко выраженной индивидуальностью, они резко различны для близких по строению и даже изомерных молекул. Это позволяет идентифицировать вещества, которые по спектрам их флуоресценции в обычных условиях установить не удаётся. Например, метод Шпольского даёт возможность осуществлять качественный и количественный анализ сложных смесей, содержащих ароматические углеводороды. Качественный анализ в этом случае производят по спектрам люминесценции и поглощения, количественный - по спектрам люминесценции методами «внутреннего» и «внешнего» стандартов. Благодаря исключительно малой ширине спектральных линий в спектрах Шпольского в этом методе удаётся достигнуть пороговой чувствительности обнаружения некоторых многоатомных ароматических соединений (Спектральный анализ 10 Спектральный анализ11 г/см 3).

Лит.: Чулановский В. М., Введение в молекулярный спектральный анализ, М. - Л., 1951; Беллами Л., Инфракрасные спектры сложных молекул, пер. с англ., М., 1963; Применение спектроскопии в химии, пер. с англ., М., 1959; Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом, М., 1959; Юденфренд С., Флуоресцентный анализ в биологии и медицине, пер. с англ., М., 1965.

В. Т. Алексанян.

Рис. 2. Принципиальная схема дуги переменного тока двойного питания: А - амперметр; R 1 и R 2 - реостаты; Тр - повышающий трансформатор: К - катушка индуктивности; АП - аналитический промежуток; П - вспомогательный промежуток; C 1 и С 2 - конденсаторы.

Рис. 3. Схема генератора конденсированной искры с управляющим промежутком: АП - регулируемый аналитический промежуток, образованный ванадиевыми электродами; R 1 - реостат; Тр - питающий трансформатор; С - конденсатор; L - катушка индуктивности; П - управляющий промежуток; R 2 - блокирующее сопротивление.

II Спектра́льный ана́лиз

линейных операторов, обобщение выросшей из задач механики теории собственных значений (См. Собственные значения) и собственных векторов (См. Собственные векторы) матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор , Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида х есть n -мерный вектор отклонений обобщённых координат системы от их равновесных значений, а А - симметрическая положительно определённая матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений λ k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений λ k ; и собственных векторов x k матрицы А. Совокупность всех собственных значений матрицы называют её спектром. Если матрица А - симметрическая, то её спектр состоит из n действительных чисел λ 1 , ..., λ n (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n- мерном пространстве (т. н. самосопряжённое преобразование) допускает специальное представление - т. н. Спектральное разложение вида

где E 1 ,..., E n - операторы проектирования на взаимно перпендикулярные направления собственных векторов х 1 , ......, x n . Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел λ 1 , ..., λ 1 , и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц (См. Нормальная форма матриц)], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f (x ) интегрального оператора А, так что здесь

где К (х, у ) - заданная на квадрате а х, у b непрерывная функция двух переменных, удовлетворяющая условию симметрии К (х, у ) = К (у, х ). В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных функций (См. Собственные функции) φ k , которым отвечает счётная последовательность действительных собственных значений λ k , составляющих в своей совокупности спектр оператора А. Если рассматривать функции, на которые действует оператор А, как векторы гильбертова пространства, то действие А будет, как и в случае конечномерного самосопряжённого преобразования, сводиться к растяжению пространства вдоль системы взаимно ортогональных осей φk с коэффициентами растяжения λ k (при λk 0 такое растяжение имеет смысл растяжения с коэффициентом |λ k |, объединённого с зеркальным отражением), а сам оператор А здесь снова будет иметь спектральное разложение вида

где E k - операторы проектирования на направления φ k .

С. а., развитый первоначально для интегральных операторов с симметричным ядром К (х, у ), определённым и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространён на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С. а., так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А - λЕ ) -1 , где Е - тождественный (единичный) оператор, не существует, или определён лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора [иногда же непрерывным спектром называют лишь совокупность тех λ, при которых оператор (А - λЕ ) -1 определён на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром].

Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

где E (λ) - т. н. разложение единицы (отвечающее оператору А ), т. е. семейство проекционных операторов (См. Проекционный оператор), удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е (λ); в случае чисто дискретного спектра все они являются скачками Е (λ), так что здесь

и спектральное разложение (*) сводится к разложению

Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |λ| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -∞ до ∞ интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек λ комплексной плоскости, представляющее собой спектр А. Что касается С. а. несамосопряжённых и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Сёкефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. учёных, но тем не менее соответствующая теория ещё далека от полной завершённости.

С. а. линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.

Лит.: Курант P., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. - Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2-3, М., 1966-74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101-20.

Физическая энциклопедия Геологическая энциклопедия - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам… … Большой Энциклопедический словарь

Спектральный анализ - математико статистический метод анализа временных рядов, при котором ряд рассматривется как сложная совокупность, смесь гармонических колебаний, накладываемых друг на друга. При этом основное внимание уделяется частоте… … Экономико-математический словарь

СПЕКТРАЛЬНЫЙ АНАЛИЗ - физ. методы качественного и количественного определения хим. состава любых веществ на основе получения и исследования их оптического спектра. В зависимости от характера используемых спектров различают следующие их виды: испускания (эмиссионный С … Большая политехническая энциклопедия

Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


Рассказать друзьям