Когда появились первые многоклеточные. Появление многоклеточных организмов. Эмбриональное развитие многоклеточных животных

💖 Нравится? Поделись с друзьями ссылкой

Большая международная группа палеонтологов обнаружила в Габоне в отложениях возрастом 2,1 млрд лет ископаемые остатки живых существ сантиметрового размера, напоминающих плоских червей. С большой вероятностью эти организмы были многоклеточными эукариотами. До сих пор древнейшими свидетельствами существования многоклеточной жизни считались спиралевидные углеродистые ленты Grypania возрастом до 1,9 млрд лет, трактуемые как водоросли.

Во времена Дарвина древнейшими известными ископаемыми организмами были обитатели морей кембрийского периода, который, как мы теперь знаем, начался 542 млн лет назад. Докембрийские толщи считались «мертвыми», и Дарвин видел в этом факте серьезный аргумент против своей теории. Он предполагал, что кембрийскому периоду должна была предшествовать длительная эпоха постепенного развития жизни, хотя и не мог объяснить, почему следы этой жизни до сих пор не найдены. Может быть, просто плохо искали?

Развитие палеонтологии в XX веке блестяще подтвердило догадки Дарвина. В докембрийских осадочных толщах обнаружилось множество недвусмысленных признаков существования живых организмов. Подавляющее большинство докембрийских находок - это окаменелые остатки микробов и разнообразные следы их жизнедеятельности.

Самым ранним свидетельством жизни считается облегченный изотопный состав углерода из графитовых включений в кристаллах апатита, найденных в Гренландии в отложениях возрастом 3,8 млрд лет. Древнейшие окаменелости, очень похожие на бактерий, и первые строматолиты - слоистые минеральные образования, возникшие в результате жизнедеятельности микробных сообществ - имеют возраст 3,55–3,4 млрд лет. Следы микробной жизни становятся многочисленнее и разнообразнее по мере уменьшения возраста пород (М. А. Федонкин, 2006. Две летописи жизни: опыт сопоставления (палеобиология и геномика о ранних этапах эволюции биосферы)).

Вопрос о времени появления первых эукариот и первых многоклеточных остается спорным. Большинство современных типов животных стали бурно развиваться только в начале кембрия, однако еще раньше - в вендском, или эдиакарском периоде (635–542 млн лет назад) в морях появились разнообразные и многочисленные мягкотелые существа, в том числе довольно крупные, которые большинством специалистов трактуются как многоклеточные животные (Я. Е. Малаховская, А. Ю. Иванцов. Вендские жители земли ; Тайна эмбрионов Доушаньтуо раскрыта , «Элементы», 12.04.2007). Еще раньше, в криогеновом периоде (850–635 млн лет назад), обнаружены химические следы присутствия примитивных многоклеточных животных - губок.

До-эдиакарские находки макроскопических ископаемых весьма редки и вызывают бурные споры (о некоторых из этих находок рассказано в заметке Животные появились свыше 635 миллионов лет назад , «Элементы», 09.02.2009; там же приведена подборка ссылок по теме). Как правило, чем древнее такие находки, тем они сомнительнее. До сих пор самым древним ископаемым существом, которое можно более или менее уверенно интерпретировать как многоклеточное, считалась грипания (Grypania ). Этот организм сохранился в виде спиралевидных углеродистых лент, напоминающих какую-то водоросль; возраст находок - до 1,9 млрд лет (М. А. Федонкин. Геохимический голод и становление царств ; Размер живых существ увеличивался скачками , «Элементы», 31.12.2008). Впрочем, некоторые авторы считают, что грипания могла быть очень крупной и сложной колонией цианобактерий.

В последнем номере журнала Nature большая группа палеонтологов из Франции, Швеции, Дании, Бельгии, Канады и Германии сообщила о новой уникальной находке, сделанной в раннепротерозойских морских отложениях на юго-востоке Габона. Возраст осадочной толщи, в которой заключены окаменелости, был определен с большой точностью при помощи нескольких независимых радиометрических методов. Он составляет 2100±30 млн лет, то есть на 200 млн лет старше самой древней грипании.

Авторы извлекли из породы более 250 образцов с окаменевшими остатками странных существ продолговатой или почти округлой формы. Их длина варьирует от 7 до 120 мм, ширина - от 5 до 70 мм, толщина - от 1 до 10 мм. Плотность организмов достигает 40 штук на квадратный метр, причем вместе встречаются экземпляры разного размера и ориентации.

При помощи компьютерной рентгеновской томографии авторы получили красивые объемные изображения древних организмов. На них хорошо видна уплощенная волнистая «кайма» с радиальной складчатостью. Складчатая область обычно доходит до внешнего края тела, но у некоторых экземпляров складки заметны только на внутренней части каймы, а у некоторых отсутствуют вовсе.

У многих крупных экземпляров в средней части тела присутствуют включения пирита двух типов: плоские «листы» и округлые гранулы. Анализ изотопного состава серы в этих пиритовых образованиях показал, что «листы» образовались вскоре после смерти организмов в результате деятельности сульфат-редуцирующих бактерий, причем концентрация сульфата в окружающей воде должна была быть довольно высокой. Округлые гранулы образовались на более поздних этапах диагенеза и поэтому не несут информации о форме и строении ископаемых существ. Различия в концентрации стабильного изотопа углерода 13 C в остатках организмов и в окружающей породе дополнительно подтвердили, что эти окаменелости не являются какими-то неорганическими образованиями. В породе обнаружены стераны - органические молекулы, происходящие от эукариотических мембранных стеролов. Это надежный признак присутствия эукариотической жизни.

По мнению авторов, найденные остатки принадлежат колониальным организмам, скорее всего колониальным эукариотам. Колонии бактерий могут иметь похожую форму и фестончатые края, но габонские находки имеют более сложную структуру, чем известные бактериальные колонии. По мнению авторов, структура этих организмов указывает на то, что они росли за счет координированного деления клеток, обменивавшихся сигналами между собой, как это происходит в ходе развития многоклеточных эукариот. К тому же присутствие стеранов недвусмысленно указывает на эукариотическую природу древних существ.

Химический анализ породы показал, что эти морские осадки формировались в присутствии заметных количеств свободного кислорода. Поэтому вполне возможно, что габонские организмы были аэробными (дышали кислородом), как и положено нормальным эукариотам. По современным данным, первое существенное увеличение концентрации кислорода в гидросфере и атмосфере (Great oxygenation event) произошло 2,45–2,32 млрд лет назад, то есть примерно за 200 млн лет до времени жизни габонских организмов.

Авторы воздержались от попыток более точного определения родственных связей новооткрытых существ. Известно, что разные группы эукариот независимо переходили к многоклеточности десятки раз, и найденные в Габоне существа, возможно, представляют собой одну из самых ранних попыток такого рода.

Земле до-стигало 1% от нынешнего. Этого было достаточно для жизнедеятельности некоторых микро-организмов, но для многоклеточных растений и особенно животных требует-ся заметно более высокая концентра-ция кислорода (то есть его количество в каждом кубометре воздуха).

Во всяком случае, хищников в тогдашних экосистемах не бы-ло. Мир древнейших многоклеточных организмов остается крайне загадочным, и изучающие их палеонтологи находятся фактически в положении космонавтов, столкнувшихся с фауной чужой планеты.

Судя по всему, первые многоклеточные животные так и не оставили прямых потомков. А пришедшие им на смену привычные для нас скелетные организмы возникли на совершенно иной основе и широко расселились по всей нашей планете .

На этой странице материал по темам:

  • Предками первфх мнргоклеточных чвляись

  • Протерозойскаяэракратко

  • Доклад 5 класс по биологии протеразойская эра

  • Арамарфозы протеразойской эры

  • Откуда взялись многоклеточные на земле

Вопросы к этой статье:

  • С чем связано появление многоклеточных растений и животных?

  • Почему многоклеточные организмы нуждаются в большей концентрации кислорода, чем одноклеточные?

  • Почему животным требуется больше кислорода для своего обмена веществ, чем растениям?

  • Сократилась или возросла общая масса всех живых организмов на Земле з результате «кислородной революции»?

  • Привело ли появление организмов из многих клеток к исчезновению одноклеточных? Почему?

  • В чем сходство некоторых древних многоклеточных с современными лишайниками?

  • Можно ли встреть сейчас на нашей планете первых многоклеточных животных?

  • Значимым этапом в истории Земли и эволюции жизни стало возникновение многоклеточности. Это дало мощный толчок к увеличению разнообразия живых существ и их развитию. Многоклеточность сделала возможным специализацию живых клеток в пределах одного организма, включая возникновение отдельных тканей и органов. Первые многоклеточные животные, вероятно, появились в придонных слоях мирового океана в конце протерозоя.
    Признаками многоклеточного организма считается то, что его клетки должны быть агрегированы, между ними обязательны разделение функций и установление устойчивых специфических контактов. Многоклеточный организм представляет собой жесткую колонию клеток, в которой сохраняется фиксированное их положение на протяжении всей жизни. В процессе биологической эволюции сходные клетки в теле многоклеточных организмов специализировались на выполнении определенных функций, что привело к формированию тканей и органов. Вероятно, в условиях протерозойского Мирового океана, уже содержавшего примитивные одноклеточные организмы, могла происходить самопроизвольная организация одноклеточных организмов в более высокоразвитые многоклеточные колонии.
    Можно только догадываться, какими были первые многоклеточные организмы протерозойской эры. Гипотетическим предком многоклеточных организмов могла быть фагоцителла, которая плавала в толще морской воды за счет биения поверхностных клеток – ресничек кинобласта.
    Фагоцителла питалась, захватывая взвешенные в среде частички пищи и переваривая их внутренней клеточной массой (фагоцитобласта). Возможно, именно из кинобласта и фагоцитобласта в процессе эволюционного развития произошло все многообразие форм и тканей многоклеточных организмов. Сама фагоцителла обитала в толще воды, но не имела ни рта, ни кишечника, а ее пищеварение было внутриклеточное. Потомки фагоцителлы приспосабливались к многообразным условиям существования при оседании их на морское дно, при перемещении к поверхности или при изменении источников питания. Благодаря этому у первых многоклеточных организмов постепенно появились рот, кишечник и другие жизненно важные органы.
    Еще одна распространенная гипотеза происхождения и эволюции многоклеточных организмов – появление трихоплакса как первого примитивного животного. Этот плоский многоклеточный организм, напоминающий ползущую кляксу, до сих пор считается одним из самых загадочных на планете. Он не обладает ни мускулатурой, ни передним и задним концом, ни осями симметрии, ни какими-либо сложными внутренними органами, но при этом способен размножаться половым путем. Особенности строения и поведения трихоплакса, ползающего по субстрату среди микроводорослей, позволили отнести его к категории одного из самых примитивных многоклеточных животных на нашей планете.
    Кто бы ни был предком многоклеточных животных, дальнейший ход эволюции в протерозое привел к появлению так называемых гребневиков. Это планктонные животные с рядами гребных пластинок, образованных сросшимися ресничками. В протерозое они перешли от плавания к ползанию по дну, их тело поэтому сплющилось, выделились головной отдел, двигательный аппарат в виде кожно-мускульного мешка, органы дыхания, сформировались выделительная и кровеносная системы. Линней, создатель первой научной системы органического мира, уделил гребневикам очень небольшое внимание, упомянув в своей «Системе природы» один вид гребневиков. В 1829 году вышла в свет первая в мире большая работа, посвященная медузам. Ее автор, немецкий зоолог Эшшольц (Eschscholtz), описал в ней и несколько видов известных ему гребневиков. Он считал их особым классом медуз, который назвал гребневиками (Ctenophora). Это название сохранилось за ними и в настоящее время» («Жизнь животных», под ред. Н. А. Гладкова, А. В. Михеева).
    Более 630 млн лет назад на Земле появились губки, которые развились на морском дне, преимущественно на мелководье, а потом опустились в более глубокие воды. Наружный слой тела губок образован плоскими покровными клетками, в то время как внутренний – жгутиковыми клетками. Одним своим концом губка прирастает к какому-либо субстрату – камням, водорослям, поверхности тела других животных.

    Первые многоклеточные организмы жили в придонных слоях древнейших морей и океанов, где внешние условия среды потребовали от них расчленения тела на отдельные части, служившие либо для прикрепления к субстрату, либо для питания. Кормились они, главным образом, органическим веществом (детритом), который покрывал донный ил. Хищников тогда практически не было. Некоторые многоклеточные организмы пропускали через себя переполненные питательным веществом верхние слои морского ила либо поглощали живые бактерии и водоросли, которые в нем обитали.
    Плоские и кольчатые черви медленно плавали над самым дном или ползали среди осадков, а трубчатые черви лежали среди донных отложений. В протерозойскую эру в морях и водных бассейнах планеты, вероятно, были широко распространены крупные плоские животные в форме блина, обитавшие на илистом дне, разнообразные медузы, плававшие в толще воды, и примитивные иглокожие. На мелководьях расцветали огромные водоросли – вендотении, которые достигали в длину около одного метра и были похожи на морскую капусту.
    Большинство живых существ на нашей планете к концу протерозойской эры уже были представлены многоклеточными формами. Их жизнедеятельность сохранилась в виде отпечатков и слепков на некогда мягком иле. В отложениях того периода можно наблюдать следы ползания, проседания грунта, вырытых норок.
    Конец протерозойской эры ознаменовался вспышкой разнообразия многоклеточных организмов и появлением животных, существование которых тогда было тесно связано с морем. Огромное количество остатков многоклеточных животных в слоях возрастом 650-700 млн лет даже послужило причиной выделения в протерозое особого периода, получившего название венд. Он продолжался примерно 110 млн лет и охарактеризовался по сравнению с другими эпохами достижением значительного разнообразия многоклеточных животных.
    Возникновение многоклеточное способствовало в дальнейшем увеличению разнообразия живых организмов. Она привела к повышению способности организмов создавать в своем теле запас питательных веществ и реагировать на изменения окружающей среды.
    для дальнейшей эволюции биосферы. Живые организмы постепенно начали сами изменять форму и состав земной коры, формировать новую оболочку Земли. Можно сказать, что в протерозое жизнь на планете стала важнейшим геологическим фактором.

    (растительных и животных сообществ)

    Ярчайшим событием в эволюции форм живого являлся выход растений и живых существ из воды и последующее образование большого разнообразия наземных растений и животных. Из них в дальнейшем и происходят высокоорганизованные формы жизни.

    Переход к наземной среде обитания требовал соответствующих изменений, т.к. вес тела на суше больше, чем в воде, и воздух, в отличие от воды не содержит питательных веществ. Кроме этого, сухой воздух иначе, чем вода, пропускает через себя свет и звук.

    Новейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Важным этапом развития жизни и усложнения её было возникновение примерно 900 млн. лет назад полового размножения. Половое размножение состоит в механизме слияния ДНК двух индивидов и последующего перераспределения генетического материала, при котором потомство похоже на родителей, но им не идентично. Достоинство полового размножения в том, что оно значительно повышает видовое разнообразие и резко ускоряет эволюцию, позволяя быстрее и эффективнее приспосабливаться к изменениям среды.

    Внутри семени зародыш мог находиться достаточно долго, пока растение не рассеет семена, и они не попадут в благоприятные условия произрастания. И тогда росток раздувает семенную оболочку, прорастает и питается запасами до тех пор, пока его корни и листья не станут сами поддерживать и питать растение. Так у всех семенных растений исчезает зависимость процесса полового размножения от наличия водной среды.

    Переход к семенному размножению связан с рядом эволюционных преимуществ: диплоидный зародыш в семенах защищен от неблагоприятных условий наличием покровов и обеспечен пищей, а семена имеют приспособления для распространения животными и др.

    В дальнейшем происходит специализация опыления (с помощью насекомых) и распространение семян и плодов животными, усиление защиты зародыша от неблагоприятных условий, обеспечение пищей, образование покровов и др. В раннем меловом периоде у некоторых растений улучшается система защиты семян путем образования дополнительной оболочки.

    Возникновение покрытосеменных было связано с совершенствованием процесса оплодотворения: с переходом к тому, чтобы пыльцу переносил не ветер, а животные (насекомые). Это потребовало значительных трансформаций растительного организма. Такой организм должен содержать средства сигнализации животным о себе, привлечения животных к себе, чтобы затем отнести пыльцу на другое растение того же вида, и, в конце концов, животное должно само что-либо при этом получить для себя (нектар или пыльцу).

    Весь этот комплекс вопросов решался на пути возникновения огромного множества прекрасных и разнообразных покрытосеменных (цветковых) растений: цветки каждого растения по внешнему (форме, окраске) виду (и запаху) должны отличаться от цветков прочих растений.

    Цветковым растениям свойственна высокая эволюционная пластичность, разнообразие, порождаемые опылением насекомыми. Постепенно распространяясь, цветковые растения завоевали все материки, победили в борьбе за сушу. В этом главную роль играл цветок, обеспечивавший привлечение насекомых-опылителей. Кроме того, цветковые имеют развитую проводящую систему: плод, зародыш цветковых имеют значительные запасы пищи, что обеспечивает развитие зародыша и семени. В кайнозое формируются близкие к современным ботанико-геологические области. Покрытосеменные достигают господства. Леса получают наибольшее распространение на Земле. Территория Европы была покрыта пышными лесами: на севере преобладали хвойные, на юге – каштаново-буковые леса с участием гигантских секвой.

    Географические области (ландшафты) изменялись в зависимости от изменений климата. При потеплении теплолюбивые растения распространялись на север, а при похолодании – на юг.

    Значительным шагом в дальнейшем усложнении организации живых существ было появление примерно 700-800 млн. лет назад многоклеточных организмов с дифференцированным телом, развитыми тканями, органами, которые выполняли определенные функции. Первые многоклеточные животные представлены сразу несколькими типами: губки, кишечно-полостные, плеченогие, членистоногие.

    Многоклеточные происходят от колониальных форм одноклеточных жгутиковых. Эволюция многоклеточных шла в направлении совершенствования способов передвижения и лучшей координации деятельности клеток, совершенствования способов дыхания и др.

    В протерозое и в начале палеозоя растения населяют в основном моря. Среди прикрепленных ко дну встречаются зеленые и бурые водоросли, а в толще воды – золотистые, красные и другие водоросли. В кембрийских морях уже существовали почти все основные типы животных, которые впоследствии лишь специализировались и совершенствовались. Облик морской фауны определяли многочисленные ракообразные, губки, кораллы, иглокожие, разнообразные моллюски, плеченогие, трилобиты. В теплых и мелководных морях обитали многочисленные кораллы, значительного развития достигли головоногие моллюски – существа, похожие на современных кальмаров, длиной в несколько метров. В конце ордовика в море появляются крупные плотоядные, достигавшие 10-11 м в длину. В ордовике, примерно 500 млн. лет назад, появляются и первые животные, имеющие скелеты, позвоночные. Это было значительной вехой в истории жизни на Земле.

    Первые позвоночные возникли в мелководных пресных водоемах, и уже затем эти пресноводные формы завоевывают моря и океаны. Первые позвоночные – мелкие (около 10 см длиной) существа, бесчелюстные рыбообразные, покрытые чешуей, которая помогала защищаться от крупных хищников (осьминогов, кальмаров).

    Дальнейшая эволюция позвоночных шла в направлении образования челюстных рыбообразных, которые быстро вытеснили большинство бесчелюстных. В девоне возникают и двоякодышащие, которые были приспособлены к дыханию в воде, но обладали легкими. Как известно, к хрящевым относятся акулы. Костистые рыбы представляют собой наиболее многочисленную группу рыб, в настоящее время преобладающую в морях, океанах, реках, озерах. Некоторые пресноводные (двоякодышащие рыбы), очевидно, и дали жизнь сначала первичным стегоцефалам, а затем и сухопутным позвоночным. Таким образом, первые амфибии появляются в девоне. В девоне возникает и другая чрезвычайно прогрессивная группа животных – насекомые.

    Таблица 6.1.

    Развитие живых организмов на планете

    Эры, периоды (время от образования Земли)

    Главные этапы развития растительного и животного мира

    Катархей

    5,0 – 3,5 млрд. лет

    Архейская эра

    3,5 – 2,6 млрд. лет

    (длительность 800 млн. лет)

    Появление первых простейших живых существ, водорослей и бактерий. Первые известковые водорослевые постройки строматолиты

    Протерозойская эра

    2,6 – 0,57 млрд. лет

    (длительность 2030 млн. лет)

    Массовое развитие сине-зеленых водорослей. Появление (около 1 млрд. лет) первых животных –кишечнополостных, червей и др.

    Палеозойская эра 570-230 млн. лет (длительность 340 млн. лет)

    Кембрийский период

    570 – 500 млн. лет

    (длительность 70 млн. лет)

    В начале периода массовое появление скелетов (внутренних и наружных – раковин) у различных групп животных. Массовое развитие известковых водорослей

    Ордовикский период

    500 – 440 млн. лет

    (длительность 60 млн. лет)

    На значительной части Русской платформы суша. В Сибири неглубокое открытое море. Распространение трилобитов и граптолитов. Первые бесчелюстные позвоночные.

    Распространяются панцирные и хрящевые рыбы, граптолиты и брахиоподы

    Силурийский период

    440 – 410 млн. лет

    (длительность 30 млн. лет)

    Появляются наземные растения –псилофиты.

    Девонский период

    410 – 350 млн. лет

    (длительность 60 млн. лет)

    Широко, распространена псилофитовая флора, появляются папоротники. Широкое развитие кистеперых и двоякодышащих рыб. Первые земноводные – стегоцефалы

    Каменноугольный период, или карбон

    350 – 280 млн. лет (длительность 65 млн. лет)

    Господство гигантских плауновых. Развитие земноводных, насекомых, возникновение пресмыкающихся

    Продолжение таблицы 6.1.

    Пермский периода

    285 – 230 млн. лет

    (длительность 55 млн. лет)

    Растут гигантские папоротники, появляются первые голосемянные. Развиваются пресмыкающиеся и крупные земноводные. Вымирают табуляты, трилобиты и многие брахиоподы

    Мезозойская эра 230 – 67 млн. лет (длительность 163 млн. лет)

    Триасовый период

    230 – 195 млн. лет

    (длительность 35 млн. лет)

    Юрский период

    195 – 137 млн. лет

    (длительность 58 млн. лет)

    Меловой периода

    137 – 67млн. лет

    (длительность 70 млн. лет)

    Появление и резкое увеличение в конце периода покрытосемянных растений. Расцвет и вымирание крупных ящеров. Появление беззубых птиц. Редкие примитивные млекопитающие. Вымирают аммониты и белемниты

    Кайнозойская эра 67 – 0 млн. лет (длительность 67 млн. лет)

    Палеогеновый период

    67 – 27 млн. лет

    (длительность 40 млн. лет)

    Распространение покрытосемянных растений. Развитие разнообразных групп млекопитающих, появляются парнокопытные, хищники, китообразные. Широко распространяются беззубые птицы

    Неогеновый период

    27 - 3 млн. лет

    (длительность 25 млн. лет).

    Богатая и разнообразная растительность. Появляются лошади, жирафы, саблезубые тигры

    Четвертичный период

    3 – 0 млн. лет

    (длительность 3 млн. лет)

    Плейсотцен (3 млн. лет – 20 тыс. лет)

    Голоцен (20 тыс. лет – 0)

    С начала периода животный и растительный мир близки к современному. В Европе и Сибири водились мамонты и носороги. Появился человек

    Образование насекомых свидетельствовало о том, что в ходе эволюции сложилось два разных способа решения задач укрепления тела и совершенствования форм отражения. У позвоночных роль каркаса выполняет внутренний скелет, у высших форм беспозвоночных насекомых – наружный. Что касается форм отражения, то у насекомых чрезвычайно сложная нервная система с разбросанными по всему организму огромными и относительно самостоятельными нервными центрами. У позвоночных отмечается развитие головного мозга и преобладание условных рефлексов над безусловными. Различие этих двух разных способов строения важнейших эволюционных задач в полной мере проявилось до перехода к жизни на суше. Вышедшие на сушу рептилии оказались перспективной формой. Они осваивали сушу. Некоторые рептилии становятся хищными, другие – растительными.

    В меловом периоде возникают гигантские растительноядные динозавры (рис. 6.2). Особенно интенсивно развиваются морские рептилии в юре (ихтиозавры). Постепенно идет и завоевание воздушной среды. Насекомые начали летать еще в карбоне и около 100 млн. лет были единовластными в воздухе. И только в триасе появляются первые летающие ящеры. Пресмыкающиеся успешно осваивают воздушную среду. Возникают крупные насекомые. Некоторые летающие ящеры имели размах крыльев до 20м. В конце мезозоя возникают плацентарные млекопитающие.

    Рис. 6.2. Диплодок достигал 30 м длинны и был одним из самых крупных животных, обитавших когда-либо на Земле.

    В конце мезозоя в условиях похолодания сокращаются пространства, занятые богатой растительностью. Это влечет за собой вымирание сначала растительноядных динозавров, а затем и охотившихся на них хищных динозавров. В условиях похолодания исключительные преимущества получают теплокровные животные – птицы и млекопитающие. В палеоцене появляются первые хищные млекопитающие. В это же время некоторые виды млекопитающих «уходят» в море (китообразные, ластоногие). От некоторых видов насекомоядных обособляется отряд приматов. В плиоцене встречаются уже все современные семейства млекопитающих.

    В кайнозое формируются те важнейшие тенденции, которые привели к возникновению человека. Это касается возникновения стадного образа жизни, который был ступенькой к возникновению социального общения. Причем, если у насекомых биосоциальность вела к потере индивидуальности; то у млекопитающих, напротив, к подчеркиванию индивидуальных черт особи. В неогене на обширных открытых пространствах саванн Африки появляются многочисленные виды обезьян. Некоторые виды приматов переходят к прямохождению. Развитие сознания привело к тому, что они стали планировать свои действия.

    Так в биологическом мире возникли предпосылки возникновения Человека и мира культуры.

    Геология и геохимия дали возможность определить время существования переходных форм между человеком и теми животными, от которых произошли люди. Археология, изучая вещественные памятники древней материальной культуры человека, раскрывает историю развития человеческого общества. Самое главное, что отличает человека от животного, - высокоразвитое сознание, при помощи которого человек стал планировать свои действия, сознательно производить все необходимые ему средства существования и членораздельная речь. Однако, несмотря на множество общих признаков у человека с обезьянами, ни одна из ныне живущих обезьян не была предком человека.

    Существование клетки зависит от выполнения ею ряда обязательных условий. К ним относятся отграничение от окружающей среды и вместе с тем обмен веществами с этой средой. На основе биохимических механизмов внутри клетки происходят реакции диссимиляции и ассимиляции, образуются химические соединения для выполнения тех или иных функций. В процессе жизнедеятельности возникают вещества, которые подлежат удалению. Приобретение клеткой способности к активному движению облегчает задачу поиска пищи и избегания опасных ситуаций. Сохранение жизни во времени зависит от способности клеток к делению. В ходе эволюции совершенствование жизненно важных функций происходит путем их дифференциации, т.е. обособления. Нередко такое обособление связано с возникновением специальных структур. У одноклеточных организмов, например у инфузории, это проявляется в приобретении некоторыми внутриклеточными структурами специализации (см. рис. 2.2). Так, пищеварительные вакуоли обеспечивают переваривание поступающих извне веществ с утилизацией клеткой необходимых химических соединений и выведением вовне непереваренных остатков. Функция сократительных вакуолей состоит в регулировании водного баланса, ресничек - в обеспечении двигательной активности.

    Названная закономерность, проявляющаяся в разделении и специализации функций и структур, представляет собой одно из всеобщих свойств жизни. Возникновение среди живых форм многоклеточных организмов, с которыми связано прогрессивное направление эволюции, является логичным развитием этого свойства. В таких организмах усиление жизненной силы благодаря многократному повторению клеточных механизмов сочетается с широчайшим размахом разделения функций, их совершенствованием, образованием разнообразных специализированных структур - органов и их систем.

    Переход к многоклеточности - одновременно и новое качественное состояние жизни, для которого характерно ускорение эволюционных преобразований на основе более полного использования резерва наследственной изменчивости. Это обусловлено, во-первых, объединением у многоклеточных организмов полового процесса и размножения в единое целое - половое размножение (см. гл. 5). Во-вторых, хотя цикл индивидуального развития имеют все живые формы, включая вирусы, только у многоклеточных организмов выделяется эмбриональный период. Значение названного периода заключается в том, что, с одной стороны, в нем отражен весь длительный процесс исторического развития данного биологического вида, с другой - именно путем изменений в ходе эмбриогенеза происходят эволюционные изменения (см. § 13.2).

    Отмеченные особенности многоклеточной организации живых существ сделали их основой дальнейшей прогрессивной эволюции. Эволюционными предшественниками многоклеточных организмов были колониальные формы простейших организмов (см. § 13.1). Наиболее ранние ископаемые останки многоклеточных животных имеют возраст около 700 млн. лет. Палеонтологическая летопись свидетельствует о том, что многоклеточные организмы возникали в ходе эволюции от одноклеточных эукариот независимо не менее 17 раз. Из ныне существующих многоклеточных животных губки ведут свою родословную от одного предка, тогда как все другие формы - от какого-то другого. В процессе исторического развития на планете возникло не менее 35 типов многоклеточных организмов. Из них до сих пор существует 26, будучи представленными более чем 2 млн. видов.

Рассказать друзьям